PART 1: QUESTIONS

Name:
Age:
Id:
Course:

Integrals - Exam 1

Lesson: 1-3

Instructions:

- Please begin by printing your Name, your Age, your Student Id, and your Course Name in the box above and in the box on the solution sheet.
- You have 90 minutes (class period) for this exam.
- You can not use any calculator, computer, cellphone, or other assistance device on this exam. However, you can set our flag to ask permission to consult your own one two-sided-sheet notes at any point during the exam (You can write concepts, formulas, properties, and procedures, but questions and their solutions from books or previous exams are not allowed in your notes).
- Each multiple-choice question is worth 5 points and each extra essay-question is worth from 0 to 5 points. (Even a simple related formula can worth some points).
- Set up your flag if you have a question.
- Relax and use strategies to improve your performance.

Exam Strategies to get the best performance:

- Spend 5 minutes reading your exam. Use this time to classify each Question in (E) Easy, (M) Medium, and (D) Difficult.
- Be confident by solving the easy questions first then the medium questions.
- Be sure to check each solution. In average, you only need 30 seconds to test it. (Use good sense).
- Don't waste too much time on a question even if you know how to solve it. Instead, skip the question and put a circle around the problem number to work on it later. In average, the easy and medium questions take up half of the exam time.
- Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.
- Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

1. Given:

I. The integral is usually called the anti-derivative, because integrating is the reverse process of differentiating.
II. The integral is usually called the derivative, because integrating has the same formulas of differentiating.
III. Sometimes, integrals can take up negative values only when $f(x)<0$.
VI. Since the finding the integral of a function with respect to x means finding a area then the integral is always positive.
V. Although finding the integral of a function with respect to x means finding the area to the x axis from the curve, an integral can be used to calculate displacement, area, volume, and other concepts that arise by combining infinitesimal data.
VI. Since the finding the integral of a function with respect to x means always finding an area then the integral is never used to find volumes.
a) Only I, III, V are correct.
b) Only II, IV and VI are correct.
c) Only II, III, and V are correct.
d) Only I, IV, and VI are correct.
e) None of the above.
2. Given:
I. The definition of indefinite integral is:

$$
\int f(x) d x=F(x)+c
$$

where $F^{\prime}(x)=f(x)$ and c is any constant.
II. Given a function $f(x)$ that is continuous on the interval $[a, b]$ we divide the interval into n subintervals of equal width, Δx and from each interval choose a point, x_{i}^{*}.

Then the definite integral of $f(x)$ from a to b is:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

III. The definition of anti-derivative of a function $f(x)$ is any function $F(x)$ such that $F^{\prime}(x)=f(x)$.

Then,
a) Only I and II are correct.
b) Only I and III are correct.
c) Only II and III are correct.
d) I, II, and III are correct.
e) None of the above.
3. Given:
I. $\int_{a}^{a} f(x) d x=0$
II. $\int_{a}^{b} k \cdot f(x) d x=k \int_{a}^{b} f(x) d x, k \in \mathbb{R}$
III. $\int_{a}^{b} f(x) \pm g(x) d x=\int_{a}^{b} f(x) d x \pm \int_{b}^{a} g(x) d x$
IV. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
V. $\int_{\mathbf{b}}^{\mathbf{a}} f(x) d x=-\int_{a}^{b} f(x) d x$

Then,
a) Only I is incorrect.
b) Only II is incorrect.
c) Only III is incorrect.
d) Only IV is incorrect.
e) Only V is incorrect..
4. Given the following graph of $f(x)$.

Then $\int_{-2}^{0} f(x) d x+\int_{2}^{0} f(x) d x$ is:
a) $A_{1}-A_{2}+A_{4}-A_{3}$
b) $A_{1}-A_{2}-A_{4}+A_{3}$
c) $-A_{1}+A_{2}-A_{4}+A_{3}$
d) $-A_{1}+A_{2}+A_{4}-A_{3}$
e) None of the above.
5. Given the graph of $f(x)=x^{3}$.

Calculate $\int_{0}^{1} f(x) d x$.
$\begin{array}{lllll}\text { a) } \frac{1}{4} & \text { b) } 4 & \text { c) } 16 & \text { d) } \frac{81}{4} & \text { e) None of the above. }\end{array}$
6. Find $I=\int 7 x^{6}+5 x^{4} d x$
a) $x^{7}+x^{5}+c$
b) $x^{6}+x^{4}+c$
c) $x^{5}+x^{3}+c$
d) $x^{4}+x^{2}+c$
e) None of the above.
7. Find $I=\int_{0}^{3} e^{x} d x$, where e is the Euler's number.
a) $e-1$
b) $e^{2}-1$
c) $e^{3}-1$
d) $e^{4}-1$
e) $e^{5}-1$.
8. Find $I=\int_{0}^{\frac{\pi}{2}} \cos x d x$.
a) $\frac{1}{2}$
b) $\frac{\sqrt{2}}{2}$
c) $\frac{\sqrt{3}}{2}$
d) 1
e) None of the above.
9. Find $I=\int_{0}^{\pi} \sec ^{2} x d x$.
a) 0
b) $\frac{\sqrt{3}}{3}$
c) 1
d) $\sqrt{3}$
e) None of the above.
10. Find $I=\int_{0}^{\frac{\sqrt{3}}{3}} \frac{d x}{1+x^{2}}$.
a) $-\frac{\pi}{6}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{3}$
e) None of the above.
11. Find $I=\int_{1}^{e} \frac{d x}{x}$, where e is the Euler's number.
a) 1
b) 2
c) 3
d) 4
e) None of the above.
12. Find $I=\int x^{4}(e)^{x^{5}} d x$
a) $\frac{1}{2}(e)^{x^{2}}+c$
b) $\frac{1}{3}(e)^{x^{3}}+c$
c) $\frac{1}{4}(e)^{x^{4}}+c$
d) $\frac{1}{5}(e)^{x^{5}}+c$
e) None of the above.
13. Find $I=\int_{0}^{\frac{\pi}{18}} \sin 3 x d x$
a) $1-\frac{\sqrt{3}}{2}$
b) $1-\frac{\sqrt{2}}{2}$
c) $\frac{1}{2}$
d) 1
e) None of the above.
14. Find $I=\int_{0}^{2} x \sqrt{2 x^{2}+1} d x$
a) $-\frac{13}{3}$
b) $-\left(\frac{\sqrt{3}}{2}-\frac{1}{6}\right)$
c) $\frac{\sqrt{3}}{2}-\frac{1}{6}$
c) $\frac{13}{3}$
e) None of the above.
15. Find $I=\int_{0}^{8 \pi} \sin \left(\frac{x}{4}\right) d x$
a) 1
b) 2
c) 3
d) 4
e) None of the above.
16. Find $I=\int \sin ^{2}(4 x) \cos (4 x) d x$
a) $\frac{1}{6} \sin ^{3}(2 x)+c$
b) $\frac{1}{9} \sin ^{3}(3 x)+c$
c) $\frac{1}{12} \sin ^{3}(4 x)+c$
d) $\frac{1}{15} \sin ^{3}(5 x)+c$
e) None of the above.
17. Find $I=\int e^{(1+5 \sin x)} \cos x d x$
a) $e^{(1+\sin x)}+c$
b) $\frac{1}{2} e^{(1+2 \sin x)}+c$
c) $\frac{1}{3} e^{(1+3 \sin x)}+c$
d) $\frac{1}{4} e^{(1+4 \sin x)}+c$
e) None of the above.
18. Find $I=\int \frac{\sin (\ln x)}{x} d x$
a) $\sin (\ln x)+c$
b) $\tan (\ln x)+c$
c) $-\cos (\ln x)+c$
d) $-\cot (\ln x)+c$
e) None of the above.
19. Find $I=\int_{-1}^{\frac{\sqrt{3}}{3}-1} \frac{d x}{x^{2}+2 x+2}$
a) $-\frac{\pi}{3}$
b) $-\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{4}$
e) None of the above.
20. In the first year in the college, students learn derivatives and Integral in Calculus I. These important tools have several applications in every branch of the physical sciences, actuarial science, computer science, statistics, engineering, economics, business, medicine, demography, etc. A problem is described by several variables that could be related by derivation or Integration.

Given a function $f(x)$ or the graph of $f(x)$, what is the interpretation of its derivative (slope) or its Integral (Area)? In a discussion, three students said:
I. Student A: In a real life, only some variables are easy to measure. Then, you could study other variables by using Derivatives or Integrals.
II. Student B: I prefer to analyze the units of each variable of the problem to know the relation among them.
III. Student C: I understand that Derivatives mean division $\frac{d y}{d x}$ and Integrals mean product or area $\int f(x) d x$.

Then:
a) Only the student A's idea is important and useful.
b) Only the student B 's idea is important and useful.
c) Only the student C 's idea is important and useful.
d) All Student's ideas are not important or useful.
e) All Student's ideas could be combined to know when to applied Derivatives and Integrals to solve problems.

Name: \qquad Age: \qquad Id: \qquad Course: \qquad

Multiple-Choice Answers

Questions	A	B	C	D	E
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Let this section in blank

	Points	Max
Multiple Choice		100
Extra Points		25
Consulting		10
Age Points		25
Total Performance		160
Grade		A

Extra Questions

21. Show that $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x=-2 \cos (\sqrt{x})+c$.
22. Find the area between the curves $f_{1}(x)=\sqrt{x}$ and $f_{2}(x)=x^{6}$.

23. Solve I_{1} and I_{2} :

$$
\begin{aligned}
& I_{1}=\int_{0}^{3} x^{2}(x) d x \text { by substitution } \\
& I_{2}=\int_{0}^{3} x^{3} d x \text { by power rule. }
\end{aligned}
$$

Show that $I_{1}=I_{2}$
24. Find the area (A) using integrals.

25. Let $f(x): \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that:

$$
f(-x)=f(x) \text { and } a \in \mathbb{R} .
$$

Show that $\int_{0}^{a} f(x) d x=A \Rightarrow \int_{-a}^{a} f(x) d x=2 A$.
Method 1: Graphically by example (5 points).
Method 2: Substitution (5 points).
Note: Both methods: (10 points)

